Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We present results of a search for spin-independent dark matter-nucleus interactions in a by 1 mm thick (0.233 g) high-resolution silicon athermal phonon detector operated above ground. For interactions in the substrate, this detector achieves an rms baseline energy resolution of (statistical error), the best for any athermal phonon detector to date. With an exposure of hours, we place the most stringent constraints on dark matter masses between 44 and , with the lowest unexplored cross section of at . We employ a conservative salting technique to reach the lowest dark matter mass ever probed via direct detection experiment. This constraint is enabled by two-channel rejection of low energy backgrounds that are coupled to individual sensors.more » « lessFree, publicly-accessible full text available October 1, 2026
- 
            A bstract We report on a measurement of the $$ {\Lambda}_c^{+} $$ Λ c + to D 0 production ratio in peripheral PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with the LHCb detector in the forward rapidity region 2 < y < 4 . 5. The $$ {\Lambda}_c^{+} $$ Λ c + ( D 0 ) hadrons are reconstructed via the decay channel $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + ( D 0 → K − π + ) for 2 < p T < 8 GeV/ c and in the centrality range of about 65–90%. The results show no significant dependence on p T , y or the mean number of participating nucleons. They are also consistent with similar measurements obtained by the LHCb collaboration in pPb and Pbp collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV. The data agree well with predictions from PYTHIA in pp collisions at $$ \sqrt{s} $$ s = 5 TeV but are in tension with predictions of the Statistical Hadronization model.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
